CERTYFIKATY ISO 9001, ISO 3834

News

Od przyklejenia magnesu do drzwi lodówki po wrzucenie piłki do kosza w meczu koszykówki - siły fizyczne działają w każdym momencie naszego życia. Wszystkie siły, których doświadczamy każdego dnia, można sprowadzić do zaledwie czterech kategorii: grawitacji, elektromagnetyzmu, siły silnej i siły słabej. Teraz fizycy twierdzą, że znaleźli możliwe oznaki piątej fundamentalnej siły natury.

Obecnie istnieje jedna na 40 000 szans, że wynikiem może być statystyczny przypadek - równy statystycznemu poziomowi ufności opisanemu jako 4,1 sigma. Aby stwierdzić odkrycie, potrzebny jest poziom 5 sigma, czyli jedna do 3,5 miliona szans, że obserwacja jest zbiegiem okoliczności. Prof. Mark Lancaster, który jest kierownikiem eksperymentu w Wielkiej Brytanii, powiedział BBC News: „Odkryliśmy, że interakcje mionów nie są zgodne z modelem standardowym [obecnie powszechnie akceptowaną teorią wyjaśniającą, jak zachowują się elementy budulcowe Wszechświata].”

Badacz z Uniwersytetu w Manchesterze dodał: „Oczywiście jest to bardzo ekscytujące, ponieważ potencjalnie wskazuje na przyszłość z nowymi prawami fizyki, nowymi cząstkami i nową siłą, której do tej pory nie widzieliśmy”.

Eksperyment z Muon g-2 polega na wysłaniu cząstek wokół 14-metrowego pierścienia, a następnie przyłożeniu pola magnetycznego. Zgodnie z aktualnymi prawami fizyki, zakodowanymi w Modelu Standardowym, powinno to spowodować, że miony będą się kołysać z określoną szybkością. Zamiast tego naukowcy odkryli, że miony chybotały się szybciej niż oczekiwano. Może to być spowodowane siłą natury, która jest zupełnie nowa w nauce.

Profesor Allanach nadał możliwej piątej sile różne nazwy w swoich modelach teoretycznych. Wśród nich jest „siła smaku”, „hipersiła z trzeciej rodziny” i - najbardziej prozaiczne ze wszystkich - „B minus L2”.

Piąta fundamentalna siła może pomóc w wyjaśnieniu niektórych wielkich zagadek związanych z Wszechświatem, z którymi borykali się naukowcy w ostatnich dziesięcioleciach. Na przykład obserwacja, że ekspansja Wszechświata przyspiesza, została przypisana tajemniczemu zjawisku znanemu jako ciemna energia. Jednak niektórzy badacze sugerowali wcześniej, że może to być dowód na działanie piątej siły.

Już 30 marca o godz. 11:00 zapraszamy Państwa na webinarium organizowane przez Wydawnictwo BMP z zakresu kogeneracji. BEST partneruje wydarzeniu jako firma współpracująca.

Kogeneracja jest najefektywniejszym sposobem wytwarzania ciepła i energii elektrycznej. Produkcja ciepła w skojarzeniu często określana jest jako jeden z najlepszych sposobów na walkę z niską emisją i smogiem. Przedsiębiorstwa ciepłownicze oparte o kogenerację są również ważnym elementem krajowego systemu elektroenergetycznego. Podczas Webinarium BMP: Kogeneracja 2021 porozmawiamy o potencjale polskiego ciepłownictwa w oparciu o kogenerację, poruszymy kwestie związane z regulacjami europejskimi, technologiami i efektywnym systemem ciepłowniczym.

Wśród prelegentów znajdą się: Małgorzata Niestępska (PEC Ciechanów), Artur Michalski (NFOŚIGW), Artur Kin (Veolia Energia Łódź), Jacek Zielke (RADPOL S.A.), Mateusz Jarosz (Shell Polska Sp. z o.o.), Wojciech Hasiak (GÓRBET REFRACTORIES), Paweł Kupczak (MPEC Nowy Sącz).

 

Bezpłatne zapisy pod linkiem: WEBINARIUM BMP: Kogeneracja 2021 (clickmeeting.com)

Food Industry Support to serwis, który wspiera branżę spożywczą w kontakcie najbardziej innowacyjnymi przedsiębiorstwami, w tym firmą BEST Systemy Grzewcze. Poniżej prezentujemy fragment artykułu dostępnego również na jego łamach pod adresem: Energia do odzyskania. Stacje regazyfikacji LNG firmy Best (foodindustry-support.pl).

 

Stacje regazyfikacji LNG umożliwiają dostawy gazu ziemnego w rejonach nie pokrytych siecią gazu przewodowego.

Dzięki technologii skraplania gazu ziemnego możliwe jest dziś skompresowanie energii w nim zawartej około 600 razy. Z jednej tony LNG ( ok. 2 m³ cieczy) otrzymujemy ok. 1330 Nm³ gazu ziemnego. Cysterna samochodowa przy jednym kursie może dowieźć skroplony gaz ziemny LNG (temperatura cieczy -167⁰ Celsjusza), który po regazyfikacji wytworzy do 24000 Nm³ gazu ziemnego.

Gaz ten może być wykorzystywany dokładnie tak samo jak sieciowy gaz ziemny. Nie ma ograniczeń mocy zamówionej czy wybierania taryfy. Partnerski kontrakt “One by One” daje wiele możliwości elastycznej współpracy. Firma „BEST” Systemy Grzewcze jako jedyny podmiot w Europie opatentowała układ odzysku chłodu z procesu regazyfikacji gazów skroplonych (LNG, azot, tlen, argon, etc.).

Schemat ideowy instalacji regazyfikacji LNG z odzyskiem chłodu.

Schemat ideowy instalacji regazyfikacji LNG z odzyskiem chłodu

Zastosowanie naszego wymiennika umożliwia pozyskiwanie energii chłodu do tej pory traconej w procesie do otoczenia za pośrednictwem parownic atmosferycznych i wykorzystanie jej przez odbiorcę do celów technologicznych. Zużywając jedną tonę LNG na godzinę (1330 Nm³ gazu) nasi odbiorcy mogą wesprzeć swoje układy chłodnicze o 180 KWh.

Sprawdź możliwości wykorzystania naszej technologii

Projekt instalacji oraz lokalizacja urządzeń dobierane są indywidualnie dla każdego Klienta. Odzysk energii chłodu z wykorzystaniem wymiennika pozwala na zwiększenie wydajności istniejących układów chłodniczych bez inwestowania w kolejne jednostki. Ilość odzyskiwanej energii zależna jest od rodzaju regazyfikowanego czynnika oraz jego parametrów.

„BEST” kompleksowo zrealizuje dostawy, montaż i uruchomienie stacji oraz dostarczy LNG. Posiadamy bogate doświadczenie w wielu branżach przemysłu – w tym w branży spożywczej.

Przejdź do zakładki dostawcy na platformie Food Industry Support i skorzystaj z bezpłatnych konsultacji: TUTAJ

Właśnie zakończyły się konsultacje Polskiej Strategii Wodorowej. Do 2025 roku mamy wydać 2 mld zł, a do 2030 roku łącznie prawie 17 mld zł.  Strategia ma dogodzić wszystkim – od OZE, przez elektrownie jądrowe aż po górników. Sprawdźmy, gdzie jesteśmy na drodze do wodorowego szczęścia.

Wodór można uzyskać z wody i prądu, albo z wykorzystaniem gazu ziemnego. Najlżejszy pierwiastek nie jest źródłem energii. Przenosi ją. Generowany ze światła słonecznego, powiewu wiatru, w godzinach mniejszego zapotrzebowania. Daje się sprężać, gromadzić, przesyłać rurociągami. Napełnia bak samochodu w ciągu minuty. Pozwala przejechać setki kilometrów, choć sam prawie nic nie waży. Po spaleniu zamienia się z powrotem w wodę. Znika bez szkody dla środowiska.

Wodór wielozadaniowy

Unia Europejska wróży wodorowi świetlaną przyszłość. Najlżejszy gaz ma zastąpić ten kopalny. Wodór można spalać w piecach przemysłowych zamiast koksu i gazu ziemnego. Można go produkować z prądu i z powrotem zamieniać na prąd w ogniwach paliwowych. Z wodoru wytwarzane będą paliwa syntetyczne, które zastąpią ropę naftową w najtrudniejszych zastosowaniach. Wszystko tak jak dzisiaj, tylko zasilane zieloną energią z paneli słonecznych i wiatraków. „Zielony” wodór przechwyci nadwyżki prądu z OZE i zdekarbonizuje te branże, których samym prądem zdekarbonizować się nie da.

- Widzimy wiele zastosowań dla zielonego wodoru – mówi Krzysztof Kochanowski, Prezes Zarządu Hydrogen Poland. – Wodór będzie niezastąpiony w przemyśle energochłonnym, a także w niektórych zastosowaniach transportowych. Zdecydowanie należy wspierać technologie wodorowe, choć należy położyć duży nacisk, aby był to wodór bezemisyjny, produkowany z elektrolizy. Tylko taki ma przyszłość wobec celów klimatycznych UE.

Jajko czy kura?

Rynek wodoru praktycznie nie istnieje, a większość technologii jest w powijakach. Wytwarzanie wodoru z wody i prądu wymaga elektrolizerów. Te są drogie. Spośród kilku metod produkcji większość jest wdrożona na małą skalę, a żadna nie osiąga sprawności powyżej 80%. Z drugiej strony większość potencjalnych odbiorców wodoru też nie jest na niego przygotowana. Rewolucja wodorowa wymaga równoczesnego zarówno stworzenia zarówno jajka jak i kury. Żadne nie chce powstać zanim to drugie nie będzie gotowe.

Plany są ambitne. Do 2025 roku ma powstać 6 GW elektrolizerów. Do 2030 roku już 2 GW w Polsce, 40 GW w Unii i kolejne 40 GW tuż za granicami – w Afryce Północnej, w Turcji, na Bałkanach i Ukrainie. Konsumpcja ma nadążać za produkcją. Zielony wodór tankować będą ciężarówki i autobusy. Powstanie wodorowa kolej i statki. Wykorzystają go zakłady azotowe i rafinerie – dziś największy konsument „szarego wodoru”, produkowanego z paliw kopalnych powodując w samej UE emisję 70 mln ton CO2 rocznie.

– Bogata lista planowanych działań i celów ujętych w polskiej strategii wodorowej bynajmniej nie napawa optymizmem, ponieważ wydaje się być w dużym stopniu oparta na myśleniu życzeniowym. Tymczasem korzystniejsze byłoby wybranie kilku priorytetowych obszarów rozwoju technologii wodorowych – uważa Urszula Stefanowicz z Polskiego Klubu Ekologicznego. – Rekomendujemy skoncentrowanie się przede wszystkim na energochłonnych branżach przemysłu, takich jak produkcja stali czy przemysł chemiczny, a także na magazynowaniu energii z OZE - jako jednym z narzędzi, uzupełniającym odpowiednie zarządzanie popytem na energię, inne metody magazynowania itd.

Producenci turbin przygotowują się do spalania wodoru

Komisja Europejska zamierza promować wykorzystanie "odnawialnych i niskoemisyjnych gazów", w szczególności wodoru. Plany polityków zależą teraz od inżynierów, którzy muszą przestawić swoje bardzo drogie urządzenia do spalania zupełnie nowego paliwa.

Od opublikowania w lipcu tego roku unijnej strategii wodorowej staje się jasne, że sektor gazowy będzie musiał zacząć uwzględniać w rozwoju dekarbonizację. Czyste paliwa, jak "zielony" wodór, zrównoważone biopaliwa i biogaz, mają pomóc w dekarbonizacji sektorów, w których wprowadzenie "czystej" elektryfikacji jest trudne.

Wodór może być nośnikiem energii oraz może zapewnić magazynowanie energii z OZE. Potrzebny jest jednak do tego rozwój produkcji czystego wodoru, systemów jego magazynowania i transportu oraz technologii jego zastosowania.

Czy obecne jednostki gazowe będą mogły spalać wodór?

Producenci turbin testują spalanie wodoru w turbinach o mocy od kilku do kilkuset megawatów. W przeciwieństwie do biometanu, który mógłby niemal z marszu zastąpić w infrastrukturze gaz ziemny,  zastosowanie wodoru nie jest tak proste. W odniesieniu do masy, gęstość energii w wodorze jest ponad dwa razy większa niż w gazie ziemnym, ale niska jest gęstość energii względem objętości. Wodór pali się bardzo łatwo, niewidocznym czystym płomieniem. Podczas spalania jego płomienie pochłaniają paliwo z prędkością około 300 centymetrów na sekundę, 10 razy szybciej niż płomienie gazu ziemnego. Wyzwań jest jednak więcej – to możliwość produkcji dużej ilości zielonego wodoru, jego magazynowanie czy kwestie związane z zapewnieniem bezpieczeństwa instalacji wodorowej.

Na rynku jest już wiele turbin gazowych, które mogą pracować na mieszance gazu ziemnego i wodoru. Celem jest turbina gazowa spalająca 100 proc. wodoru.

Siemens Energy deklaruje, że wszystkie jego nowo wyprodukowane turbiny gazowe są w stanie spalać mieszankę paliwową o różnej zawartości wodoru.

Mniejsze zawartości wodoru, mowa tu o dodatku rzędu 10-30 proc. objętości, nie wymagają praktycznie modyfikacji w nowych jednostkach, choć ostatecznie zależy to od typu turbiny. Dodatek do 50 proc., a nawet 70 proc. wodoru może oznaczać konieczność modyfikacji palnika oraz systemów sterowania w zakresie kontroli procesów spalania i bezpieczeństwa.

Zawartość wodoru powyżej 70 proc. w spalanym gazie wiąże się już z obowiązkowymi modyfikacjami, by zapewnić bezpieczne, stabilne i spełniające normy emisyjne spalanie.

Mieszanki są gotowe

General Electric podaje, że jego turbiny gazowe klasy F i E oraz Aeroderivative (turbiny gazowe pochodzenia lotniczego) pracowały przeszło 6 mln godzin na paliwach zawierających wodór. W większości był pozyskiwany jako produkt uboczny z zakładów przemysłowych, rafinerii i hut. GE opracował system spalania DLN 2.6e, który może działać na mieszance gazu ziemnego i 50 proc. (objętościowo) wodoru. Można go znaleźć w niektórych zastosowaniach w najnowszych i największych turbinach GE, takich jak HA. Docelowo turbina HA ma mieć możliwość spalania 100 proc. wodoru.

Zakłady, gdzie w turbinach GE spalany jest częściowo wodór, pracują na całym świecie. Przykładem może być południowokoreańska rafineria Daesan, gdzie ponad 20 lat turbina GE 6B pracuje spalając także gaz z domieszką od 70 do nawet 95 proc. wodoru.

Wodorowe imperium

Japoński MHPS (Mitsubish Hitachi Power System) ma największy udział w rynku turbin gazowych.  Japończycy z sukcesem przeprowadzili testy pracy turbin przy zawartości wodoru 30 proc. MHPS prowadzi obecnie pilotażowy projekt konwersji jednej z trzech jednostek w zakładzie Magnum w Holandii. Projekt w Groningen, w którym uczestniczą Nuon, Vattenfall, Equinor i Gasunie, obejmuje modyfikację turbiny gazowej M701F o mocy 440 MW.

W 2020 roku firma otrzymała również zamówienie od Intermountain Power Agency w Delta w stanie Utah na dwie turbiny gazowe JAC, które mogą wykorzystywać do 30 proc. paliwa wodorowego. Docelowo turbiny te mają być w stanie wykorzystywać w 100 proc. wodór.  MHPS rozwija tam również produkcję i magazynowanie wodoru z OZE w ramach projektu Advanced Clean Energy Storage (ACES).

Paul Browning, dyrektor generalny MHPS Americas stwierdził, że wraz z postępami prac, każda sprzedawana turbina gazowa MHPS  zyska pełną możliwość wykorzystania wodoru z OZE. Klienci mogą dziś zakupić elektrownię na gaz ziemny i z czasem przekształcić ją w magazyn energii z OZE.

Włosi także inwestują w wodór

Do grona firm, które chcą znaleźć się w pierwszym szeregu jeśli chodzi o rozwiązania wodorowe, planuje dołączyć Ansaldo Energia. Ten włoski producent turbin podpisał rok temu list intencyjny z norweskim Equinorem. Equinor będzie współfinansować testy  turbiny gazowej GT36 H Ansaldo, by sprawdzić czy może ona być zasilana wyłącznie wodorem. Głównymi celami jest obniżenie emisji tlenków azotu, wzmocnienie elastyczności operacyjnej i minimalizacja obniżania wartości znamionowych silnika przy bardzo wysokich zawartościach wodoru - podały firmy.